Eco-Friendly, High-Performance Humidity Sensor Using Purple Sweet-Potato Peel for Multipurpose Applications

Author:

Rahman Sheik Abdur1ORCID,Khan Shenawar Ali1ORCID,Iqbal Shahzad1ORCID,Rehman Muhammad Muqeet1ORCID,Kim Woo Young1ORCID

Affiliation:

1. Department of Electronic Engineering, Faculty of Applied Energy System, Jeju National University, Jeju-si 63243, Jeju Special Self-Governing Province, Republic of Korea

Abstract

Biomaterials offer great potential for enhancing the performance of humidity sensors, which play a critical role in controlling moisture levels across different applications. By utilizing environmentally friendly, sustainable, and cost-effective biomaterials, we can improve the manufacturing process of these sensors while reducing our environmental impact. In this study, we present a high-performance humidity sensor that utilizes purple sweet potato peel (PSPP) as both the substrate and sensing layer. The PSPP is chosen for its polar hydrophilic functional groups, as well as its environmentally friendly nature, sustainability, and cost-effectiveness. Remarkably, this humidity sensor does not require an external substrate. It exhibits a wide detection range of 0 to 85% relative humidity at various operating frequencies (100 Hz, 1 kHz, and 10 kHz) in ambient temperature, demonstrating its effectiveness in responding to different humidity levels. The sensor achieves a high sensitivity value of 183.23 pF/%RH and minimal hysteresis of only 5% at 10 kHz under ambient conditions. It also boasts rapid response and recovery times of 1 and 2 s, respectively, making it suitable for use in high-end electronic devices. Moreover, the sensor’s applications extend beyond environmental monitoring. It has proven effective in monitoring mouth and nasal breathing, indicating its potential for respiratory monitoring and noncontact proximity response. These findings suggest that sweet potato peel material holds great promise as a highly stable, non-toxic, biodegradable, cost-effective, and environmentally friendly option for various domains, including healthcare monitoring.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3