Affiliation:
1. State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
Abstract
In recent decades, surface-enhanced Raman spectroscopy (SERS) has become a powerful detection scheme for many applications, particularly bioassays, due to its unique strengths, such as its ultrasensitive performance. Due to the development of various SERS substrates, more SERS-based bioassays with improved sensitivity and reproducibility have been designed and manufactured. SERS is able to provide the intrinsic vibration information of molecules through the unique Raman fingerprint to enable direct detection and quantitation. Meanwhile, with the assistance of Raman-active labels, biomolecules, like proteins and nucleic acids, can be detected by the immunosandwich assay. In this review, we focus on the rational design and engineering of signal-enhancing substrates for SERS-based bioassays. Those substrates are classified into two categories, i.e., nanoparticles in colloidal suspension and nanostructures on a solid support. Each category is discussed in detail with stress on their biomedical application potential. Afterward, we summarize the SERS-based assays of proteins, nucleic acids, and viruses, for which both label-free and labeled approaches play important roles. Finally, we present the remaining challenges in the field of SERS-based bioassays and sketch out promising directions for future development.
Funder
National Natural Science Foundation of China
Subject
Physical and Theoretical Chemistry,Analytical Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献