Abstract
Ginkgo biloba is one of the most important sources of active compounds, mainly flavonoids and phenolic compounds. Due to its importance related to pharmaceutical practice, the making of a qualitative and quantitative method for the detection and quantification of active compounds from Ginkgo biloba pharmaceutical products is desirable. In this study, the content of biological active compounds from Ginkgo biloba products was estimated using cyclic voltammetry. The electrochemical determination of active compounds was carried out by using a screen-printed carbon electrode modified with carbon nanotubes. The studies regarding parameter optimization were made using solutions containing potassium ferrocyanide and catechol, respectively. In both cases, the redox processes of studied compounds was observed, which were controlled by the diffusion phenomenon. We analyzed two pharmaceutical products containing Ginkgo biloba, a RX product (recipe medicine requires a medical prescription to be dispensed) and an OTC (Over-The-Counter, which can be obtained without a prescription) product. The cyclic voltammograms of the two products showed two redox processes due to the antioxidant properties of the products. It was found that the RX product had a greater content of active compounds compared to the OTC product. Therefore, the voltammetric method has great utility for the determination of compounds with redox properties from pharmaceutical products containing Ginkgo biloba.
Subject
Physical and Theoretical Chemistry,Analytical Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献