Novel 1D/2D KWO/Ti3C2Tx Nanocomposite-Based Acetone Sensor for Diabetes Prevention and Monitoring

Author:

Ama Obinna,Sadiq Mahek,Johnson Michael,Zhang Qifeng,Wang Danling

Abstract

The acetone content in the exhaled breath of individuals as a biomarker of diabetes has become widely studied as a non-invasive means of quantifying blood glucose levels. This calls for development of sensors for the quantitative analysis of trace concentration of acetone, which is presents in the human exhaled breath. Traditional gas detection systems, such as the Gas Chromatography/Mass Spectrometry and several types of chemiresistive sensors are currently being used for this purpose. However, these systems are known to have limitations of size, cost, response time, operating conditions, and consistent accuracy. An ideal breath acetone sensor should provide solutions to overcome the above limitations and provide good stability and reliability. It should be a simple and portable detection system of good sensitivity, selectivity that is low in terms of both cost and power consumption. To achieve this goal, in this paper, we report a new sensing nanomaterial made by nanocomposite, 1D KWO (K2W7O22) nanorods/2D Ti3C2Tx nanosheets, as the key component to design an acetone sensor. The preliminary result exhibits that the new nanocomposite has an improved response to acetone, with 10 times higher sensitivity comparing to KWO-based sensor, much better tolerance of humidity interference and enhanced stability for multiple months. By comparing with other nanomaterials: Ti3C2, KWO, and KWO/Ti3C2Tx nanocomposites with variable ratio of KWO and Ti3C2Tx from 1:1, 1:2, 1:5, 2:1, 4:1, and 9:1, the initial results confirm the potential of the novel KWO/Ti3C2 (2:1) nanocomposite to be an excellent sensing material for application in sensitive and selective detection of breath acetone for diabetics health care and prevention.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3