Synthesis and Antibacterial Activity of Rhodanine-Based Azo Dyes and Their Use as Spectrophotometric Chemosensor for Fe3+ Ions

Author:

Akram Dana,Elhaty Ismail A.,AlNeyadi Shaikha S.

Abstract

This research includes the design and synthesis of new derivatives for rhodanine azo compounds (4a–c) containing a naphthalene ring. Physiochemical properties of the synthesized compounds were determined by their melting points, FTIR, 1H-NMR, 13C-NMR, and elemental analysis spectroscopic techniques. The biological activities of the newly prepared azo rhodanine compounds were evaluated against some pathogenic bacteria using three different bacterial species including (Escherichia coli., Pseudomonas aeruginosa, Staphylococcus aureus) and compared with amoxicillin as a reference drug. The results showed that our compounds have moderate-to-good vital activity against the mentioned pathogenic bacteria. The selectivity and sensitivity of the newly prepared rhodanine azo compounds with transition metals Co2+, Cu2+, Zn2+, Ni2+, and Fe3+ were studied using UV–vis and fluorescence spectroscopy techniques. Among the synthesized azos, azo 4c showed affinity toward Fe3+ ions with an association constant of 4.63 × 108 M−1. Furthermore, this azo showed high sensitivity toward Fe3+ ions with detection limits of 5.14 µM. The molar ratio and Benesi–Hildebrand methods confirmed the formation of complexes between azo 4c and Fe3+ with 1:2 binding stoichiometry. Therefore, azo 4c showed excellent potential for developing efficient Fe3+ chemosensors.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3