Multifunctional Superhydrophobic Platform for Control of Water Microdroplets by Non-Uniform Electrostatic Field

Author:

Pavliuk Georgii1ORCID,Zhizhchenko Alexey2ORCID,Vitrik Oleg2

Affiliation:

1. Institute of High Technologies and Advanced Materials, Far Eastern Federal University, 8 Sukhanova St., 690950 Vladivostok, Russia

2. Institute for Automation and Control Processes, 5 Radio St., 690041 Vladivostok, Russia

Abstract

At the moment, manipulation of liquid microdroplets is required in various microfluidic and lab-on-a-chip devices, as well as advanced sensors. The platforms used for these purposes should provide the possibility of controlled selective movement and coalescence of droplets, and the manipulation speed should be sufficiently high (more than 10 mm/s). In addition, to facilitate their practical application, such platforms should have a simple planar geometry and low manufacturing cost. We report here a new method for microdroplet manipulation based on the use of non-uniform electrostatic fields. Our platform uses an electrode array embedded in a dielectric planar superhydrophobic substrate (50 × 50 mm). When a voltage is applied to a certain sequence of electrodes, a non-uniform electrostatic field is produced, which acts to attract a droplet on the substrate to the electrodes. This achieves a stepwise movement of the droplet. We realized non-contact, selective and high speed (up to 80 mm/s) movement of the individual droplets along specified trajectories (like a chess game) and their selective coalescence. It allowed us to demonstrate several controllable chemical reactions including an analytical one. In our opinion, this approach has a huge potential for chemical technology applications, especially in advanced sensors.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3