Chemoresistive Properties of V2CTx MXene and the V2CTx/V3O7 Nanocomposite Based on It

Author:

Mokrushin Artem1ORCID,Nagornov Ilya1ORCID,Averin Aleksey2ORCID,Simonenko Tatiana1ORCID,Simonenko Nikolay1ORCID,Simonenko Elizaveta1ORCID,Kuznetsov Nikolay1

Affiliation:

1. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., Moscow 119991, Russia

2. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky pr., bldg. 4, Moscow 199071, Russia

Abstract

The in-situ Raman spectroscopy oxidation of the accordion-like V2CTx MXene has been studied. It was found that a nanocomposite of V2CTx/V3O7 composition was formed as a result. The elemental and phase composition, the microstructure of the synthesized V2CTx powder and MXene film as well as the V2CTx/V3O7 nanocomposite obtained at a minimum oxidation temperature of 250 °C were studied using a variety of physical and chemical analysis methods. It was found that the obtained V2CTx and V2CTx/V3O7 films have an increased sensitivity to ammonia and nitrogen dioxide, respectively, at room temperature and zero humidity. It was shown that the V2CTx/V3O7 composite material is characterized by an increase in the response value for a number of analytes (including humidity) by more than one order of magnitude, as well as a change in their detection mechanisms compared to the individual V2CTx MXene.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3