A Silver Nanoparticles-Based Selective and Sensitive Colorimetric Assay for Ciprofloxacin in Biological, Environmental, and Commercial Samples

Author:

Aijaz Aqsa12,Raja Daim Asif12,Khan Farooq-Ahmad12ORCID,Barek Jiri3ORCID,Malik Muhammad Imran12ORCID

Affiliation:

1. Third World Centre for Science and Technology, International Centre for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan

2. H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan

3. UNESCO Laboratory of Environmental Electrochemistry, Department of Analytical Chemistry, Faculty of Science, Charles University, Albertov 6, 12843 Prague, Czech Republic

Abstract

The wide-spread usage of ciprofloxacin (CIP) resulted in its presence in different parts of the ecosystem. Thus, a simple, reliable, on-spot detection method for CIP is required in environmental context. Herein, a colorimetric assay is developed for the detection of CIP based on the branched polyethyleneimine (PEI) conjugated silver nanoparticles (PEI-AgNPs). AgNPs are prepared using PEI as stabilizing agent following a simple one-pot two-phase procedure. The prepared PEI-AgNPs are subsequently used for an efficient and selective detection of CIP. The characteristic yellow colour of PEI-AgNPs changed to colourless when CIP was added which was further confirmed by quenching in the intensity of the SPR (surface plasmon resonance) band (hypochromic shift). The proposed method is efficient for the quantitation of CIP in a linear dynamic range (LDR) of 0.1–200 µM with a limit of detection (LOD) of 0.038 µM, and limit of quantification (LOQ) of 0.12 µM. The developed method is selective, efficient, and sensitive to CIP in the presence of numerous interfering species and in real biological, environmental, and commercial pharmaceutical samples. Excellent performance of the proposed method compared to UV-Vis spectroscopy and UPLC in environmental, biological, and commercial pharmaceutical samples is demonstrated.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3