PEDOT:PSS/PEDOT Film Chemiresistive Sensors for Hydrogen Peroxide Vapor Detection under Ambient Conditions

Author:

Xie Xiaowen1,Gao Nan2,Zhu Ling1,Hunter Matthew3ORCID,Chen Shuai12ORCID,Zang Ling3ORCID

Affiliation:

1. Jiangxi Key Laboratory of Flexible Electronics and School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, China

2. Jiangxi Engineering Laboratory of Waterborne Coating, Nanchang 330013, China

3. Nano Institute of Utah and Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112, USA

Abstract

Hydrogen peroxide (aqueous solution of H2O2) is one of the most used reagents i n medical sterilization, environmental disinfection, food storage, and other fields. However, hydrogen peroxide has the potential to cause serious harm to biological health and environmental safety. There are many methods (especially electrochemistry) for H2O2 detection in liquid phase systems, but a lack of methods for vapor detection. This is due to its colorless and tasteless nature, as well as the oxidative activity of the molecule and its coexistence with humidity. In this study, poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), one of the most commercially successful and widely used conductive polymers, was employed to fabricate an all-organic chemiresistive sensor for simple, real-time, and on-site sensing of hydrogen peroxide vapor (HPV) at room temperature. In comparison with pristine PEDOT:PSS film, the PEDOT:PSS/PEDOT film was prepared by in situ electrochemical polymerization. Upon exposure to different concentrations of HPV, it was found that the hydrophobic and porous PEDOT layer could weaken the interference of humidity in HPV sensing, resulting in a more sensitive and accurate response. At 1.0 ppm HPV concentration, the resistance signal response was increased by nearly 89% compared with the pristine PEDOT:PSS film. This PEDOT-film-based chemiresistive sensor showcases the possibility for further development of nonenzymatic HPV monitoring technology.

Funder

Academic Development Project of TongXin Funds

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3