Mechanism of Fast NO Response in a WO3-Nanorod-Based Gas Sensor

Author:

Mineo GiacomettaORCID,Moulaee KavehORCID,Neri GiovanniORCID,Mirabella SalvoORCID,Bruno ElenaORCID

Abstract

The development of fast and reliable gas sensors is a pressing and growing problem for environmental monitoring due to the presence of pollutants in the atmosphere. Among all gases, particular attention is devoted to NO, which can cause serious health problems. WO3 nanorods represent promising candidates for this purpose due to their high electrical stability and low cost of production. Here, the hydrothermal synthesis of WO3 nanorods is reported, in addition to the realization of a chemo-resistive NO sensor. NO-sensing tests were performed at different temperatures (250–400 °C) and under different gas concentrations (250–2500 ppm), and NO response and recovery curves were also modeled by using the Langmuir adsorption theory by highlighting the NO-sensing mechanism of the WO3 nanorods. An interaction occurred at the surface between NO and the adsorbed oxygen ions, thus clarifying the NO-reducing behavior. The fast response and recovery times open the route for the development of fast NO sensors based on WO3.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3