Energy-Efficient Chemiresistive Sensor Array Based on SWCNT Networks, WO3 Nanochannels and SWCNT-Pt Heterojunctions for NH3 Detection against the Background Humidity

Author:

Romashkin Alexey V.,Lashkov Andrey V.ORCID,Sysoev Victor V.ORCID,Struchkov Nikolay S.,Alexandrov Evgeny V.,Levin Denis D.

Abstract

Recently, promising results have been achieved in improving the sensitivity to ammonia in gas sensors through the use of structures composed of heterojunctions or nanochannels. However, their sensitivity is highly dependent on the background humidity under air conditions. The sensor structures which could ensure selective ammonia detection with a low detection limit, despite interference from changing background humidity, remain highly demanded. In this work, we consider sensing units containing (i) nanochannels formed by a continuous tungsten oxide nanolayer to appear in contact between single-walled carbon nanotubes (SWCNTs) and a Pt sublayer and (ii) SWCNT-Pt junctions in frames of mass-scale microelectronic technologies. SWCNTs were deposited by spray-coating on a thin WO3/Pt/W sublayer formed by a photolithographic pattern to be accompanied by satellite samples with just SWCNTs for reference purposes. We elucidate the specific differences that appeared in the response of sensors based on SWCNT-Pt junctions and WO3 nanochannels relative to satellite SWCNT samples with a similar SWCNT network density. Particularly, while a similar response to NH3 vapors mixed with dry air is observed for each sensor type, the response to NH3 is reduced significantly in the presence of background humidity, of 45 rel.%, especially in the case of WO3 nanochannel structures even at room temperature. A multisensor array based on the four various sensing structures involving SWCNT-Pt junctions, WO3 nanochannels, and their satellite-only-SWCNT ones allowed us to determine a correct ammonia concentration via utilizing the linear discriminant analysis despite the presence of background air humidity. Thus, such an energy-efficient multisensor system can be used for environmental monitoring of ammonia content, health monitoring, and other applications.

Funder

RFBR

Ministry of Education and Science

Russian Science Foundation

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3