Electrochemical Sensors Based on Metal-Porous Carbon Nanozymes for Dopamine, Uric Acid and Furazolidone

Author:

Xiong Jianhui,Yang Yuxi,Wang Linyu,Chen Shouhui,Du YanORCID,Song Yonghai

Abstract

A series of electrochemical sensors based on metal-porous carbon nanozymes were developed for the detection of dopamine (DA), uric acid (UA) and furazolidone (FZ). The metal-porous carbon nanozymes were prepared by calcination of porous crystalline covalent-organic frameworks (COFs) loaded metal ions. By carbonizing, the COFs was transformed into carbon nanosheets (CN) and metal ions were reduced into 5–10 nm MNPs loaded on CN uniformly (CuNPs/CN, FeNPs/CN, NiNPs/CN and CoNPs/CN). These porous MNPs/CN nanozymes were used for electrochemical detection of DA, AA and FZ, showing good performance. The electrochemical sensor based on CuNPs/CN nanozymes was used to simultaneously measure DA and UA. The linear range of DA detection was 0.015 μ–140 μM, the linear range of UA detection was 0.03 μM–175 μM, and the sensitivity of DA and UA were 1.03 μA μM−1 cm−2 and 0.52 μA μM−1 cm−2. The sensitivity of sensors based on FeNPs/CN, CoNPs/CN and NiNPs/CN nanozymes to detect DA were 1.30 μA cm−2 μM−1, 1.07 μA cm−2 μM−1 and 0.88 μA cm−2 μM−1, the linear ranges were 35 nM–200 μM, 42 nM–250 μM and 52 nM–250 μM. The sensitivity of detecting UA were 0.310 μA cm−2 μM−1, 0.587 μA cm−2 μM−1 and 0.360 μA cm−2 μM−1, the linear ranges were 145 nM–900 μM, 77 nM–700 μM and 125 nM–800 μM. Finally, CuNPs/CN was also used to construct a FZ sensor with a linear range of 61.5 nM–200 μΜ and a detection limit of 20.1 nM. The sensors also have good reproducibility and repeatability.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

Reference66 articles.

1. Noble metal construction for electrochemical nonenzymatic glucose detection;Adv. Mater. Technol.,2022

2. Electronic structure of atomically dispersed supported iridium catalyst controls iridium aggregation;ACS Catal.,2020

3. Recent advances in chemical surface modification of metal oxide nanoparticles with silane coupling agents: A review;Adv. Colloid Interface Sci.,2020

4. Sustainable synthesis of supported metal nanocatalysts for electrochemical hydrogen evolution;Chin. J. Catal.,2020

5. Graphene biodevices for early disease diagnosis based on biomarker detection;ACS Sens.,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3