Solvatochromic Behavior of 2,7-Disubstituted Sila- and Germafluorenes

Author:

Jarrett-Noland Shelby J.1,McConnell William1,Braddock-Wilking Janet1,Dupureur Cynthia M.1

Affiliation:

1. Department of Chemistry and Biochemistry, University of Missouri St. Louis, St. Louis, MO 63121, USA

Abstract

Push–pull dyes exhibit intramolecular charge transfer behavior, which due to changes in the dipole moment upon excitation, is the origin of their sensitivity to the environment. Such compounds are of interest as probes for bioimaging and as biosensors to monitor cellular dynamics and molecular interactions. Desirable biological probes absorb in the visible region, have high extinction coefficients, high quantum yield and excellent photostability. Fluorophores with scaffolding that can be used to tune and optimize solvatochromic behavior are of particular interest. Here, we investigate the environmental sensitivity of a small library of highly fluorescent 2,7-disubstituted sila- and germafluorenes. Density functional theory (DFT) calculations show that charge transfer occurs from the alkyne core out to the 2,7-substitutents and 3,6-methoxy substituents, the hallmark of push–pull behavior. They exhibit HOMO–LUMO energy gaps of about 3 eV with desirable dipole moments ranging from 2 to 9 D. These compounds exhibit desirable Stokes shifts in various solvents (25 to 102 nm). Interestingly, silafluorene with a benzaldehyde substituent exhibits competitive solvatochromic behavior. With the ability to tune push–pull properties via the 2,7-substituent, these disubstituted sila- and germafluorenes have excellent potential as biological probes.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3