Affiliation:
1. Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
2. Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
Abstract
The abnormal levels of four DNA bases, namely guanine (G), adenine (A), thymine (T), and cytosine (C) are implicated in several cancers, metabolic diseases, and HIV/AIDS. Therefore, the accurate detection and concentration measurement of these four DNA bases is of significant interest. Furthermore, there has recently been a push towards developing chemical sensors which are more sustainable and cost-effective. Herein, we developed a graphite paste electrode which incorporated the biochar of sugarcane and methylene blue (GPE-SC-MB) in order to simultaneously detect these four DNA bases. The linear ranges obtained for the four DNA bases are 0.67–38.67 µM for G, 0.67–126.67 µM for A, and 6.67–1600 µM for T and C. The limit-of-detection (LOD) values obtained were 0.037 μM for G, 0.042 µM for A, 4.25 μM for T, and 5.33 µM for C. The electroactive surface area of the electrode as well as the diffusion coefficients for each analyte were determined. Lastly, the GPE-SC-MB was tested in real samples using human saliva with recovery values between 99.0 and 103.0%. Thus, biochar from sugarcane proved to be an effective electrode modifier material for the development of sensitive electrochemical sensors.
Funder
Canada Foundation for Innovation
Natural Sciences and Engineering Research Council
Ontario Ministry of Research and Innovation
Canada Research Chairs
Subject
Physical and Theoretical Chemistry,Analytical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献