Sensor Selection for an Electronic Tongue for the Rapid Detection of Paralytic Shellfish Toxins: A Case Study

Author:

Raposo Mariana1ORCID,Gomes Maria Teresa S. R.1ORCID,Costa Sara T.234ORCID,Botelho Maria João23ORCID,Rudnitskaya Alisa1ORCID

Affiliation:

1. CESAM and Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal

2. IPMA, Portuguese Institute for the Sea and Atmosphere, 1449-006 Lisbon, Portugal

3. CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4050-123 Porto, Portugal

4. ICBAS, Abel Salazar Biomedical Sciences Institute, University of Porto, Largo Prof. Abel Salazar, 2, 4099-003 Porto, Portugal

Abstract

The performance of an electronic tongue can be optimized by varying the number and types of sensors in the array and by employing data-processing methods. Sensor selection is typically performed empirically, with sensors picked up either by analyzing their characteristics or through trial and error, which does not guarantee an optimized sensor array composition. This study focuses on developing a method for sensor selection for an electronic tongue using simulated sensor data and Lasso regularization. Simulated sensor responses were calculated using sensor parameters such as sensitivity and selectivity, which were determined in the individual analyte solutions. Sensor selection was carried out using Lasso regularization, which removes redundant or highly correlated variables without much loss of information. The objective of the optimization of the sensor array was twofold, aiming to minimize both quantification errors and the number of sensors in the array. The quantification of toxins belonging to one of the groups of marine toxins—paralytic shellfish toxins (PSTs)—using arrays of potentiometric chemical sensors was used as a case study. Eight PSTs corresponding to the toxin profiles in bivalves due to the two common toxin-producing phytoplankton species, G. catenatum (dcSTX, GTX5, GTX6, and C1+2) and A. minitum (STX, GTX2+3), as well as total sample toxicity, were included in the study. Experimental validation with mixed solutions of two groups of toxins confirmed the suitability of the proposed method of sensor array optimization with better performance obtained for the a priori optimized sensor arrays. The results indicate that the use of simulated sensor responses and Lasso regularization is a rapid and efficient method for the selection of an optimized sensor array.

Funder

FCT/MCTES

Iceland, Liechtenstein and Norway

FCT

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3