Preparation and Application of a Fast, Naked-Eye, Highly Selective, and Highly Sensitive Fluorescent Probe of Schiff Base for Detection of Cu2+

Author:

Liu Juan1,Cheng Peng-Yu1,Chen Sai1,Wang Meng1,Wei Kai1,Li Yuan1,Cao Yao-Yao1,Wang Xing2,Li Hong-Lei1ORCID

Affiliation:

1. Department of Pharmacy, Kangda College of Nanjing Medical University, Lianyungang 222000, China

2. School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China

Abstract

A fluorescent probe, N′-((3-methyl-5-oxo-1-phenyl-4, 5-dihydro-1H-pyrazol-4-yl) methylene)-2-oxo-2H-chromene-3-carbohydrazide (MPMC), was synthesized and characterized. Characterizations of the synthetic MPMC were conducted via proton nuclear magnetic resonance (1HNMR) spectroscopy and carbon-13 nuclear magnetic resonance spectroscopy (13C NMR). The fluorescence emission behaviors of the MPMC probe towards diverse metal ions were detected, and the probe exhibited high sensitivity and selectivity towards Cu2+ over other metal ions via the quenching of its fluorescence. Furthermore, the existence of other metal actions made no apparent difference to the fluorescence intensity of the MPMC-Cu2+ system; that is, MPMC displayed a good anti-interference ability. Job’s plot of the MPMC and copper ions indicated that the detection limit was 10.23 nM (R2 = 0.9612) for the assayed actions, with a stoichiometric ratio of 1:1 for MPMC and Cu2+. Additionally, the color of the MPMC probe solution changed from nearly colorless to yellow in the presence of Cu2+ in visible light, and the color change could be observed by the naked eye. Similarly, the color resolved from bright yellow into blue in ultraviolet light. Moreover, reusability studies indicated that the MPMC probe was reusable. The pH effect of the MPMC probe on Cu2+ had a broad range of pH detection, i.e., from 4.0 to 11.0. The response time of the MPMC probe for determining Cu2+ was within 1 min. The recognition of Cu2+ via MPMC performed on pre-treated paper under sunlight and UV light both had a distinct colour change. Thus, the solid-state method for detecting Cu2+ with the naked eye was both economical and convenient.

Funder

Scientific Research Personnel Training Program of Kangda College of Nanjing Medical University

Science and Technology Funds of Nanjing Medical University

Social Development Funds of Lianyungang

Science and Technology Funds of Kanada College of Nanjing Medical University

Education Research Project of Kangda College of Nanjing Medical University

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3