Ultrafast Electrochemical Self-Doping of Anodic Titanium Dioxide Nanotubes for Enhanced Electroanalytical and Photocatalytic Performance

Author:

Spanu Davide1ORCID,Dhahri Aicha1,Binda Gilberto12ORCID,Monticelli Damiano1ORCID,Pinna Marco1ORCID,Recchia Sandro1ORCID

Affiliation:

1. Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy

2. Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway

Abstract

This study explores an ultrarapid electrochemical self-doping procedure applied to anodic titanium dioxide (TiO2) nanotube arrays in an alkaline solution to boost their performance for electroanalytical and photocatalytic applications. The electrochemical self-doping process (i.e., the creation of surface Ti3+ states by applying a negative potential) is recently emerging as a simpler and cleaner way to improve the electronic properties of TiO2 compared to traditional chemical and high-temperature doping strategies. Here, self-doping was carried out through varying voltages and treatment times to identify the most performing materials without compromising their structural stability. Interestingly, cyclic voltammetry characterization revealed that undoped TiO2 shows negligible activity, whereas all self-doped materials demonstrate their suitability as electrode materials: an outstandingly short 10 s self-doping treatment leads to the highest electrochemical activity. The electrochemical detection of hydrogen peroxide was assessed as well, demonstrating a good sensitivity and a linear detection range of 3–200 µM. Additionally, the self-doped TiO2 nanotubes exhibited an enhanced photocatalytic activity compared to the untreated substrate: the degradation potential of methylene blue under UV light exposure increased by 25% in comparison to undoped materials. Overall, this study highlights the potential of ultrafast electrochemical self-doping to unleash and improve TiO2 nanotubes performances for electroanalytical and photocatalytic applications.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3