Detection of Xylene Using Ni(OH)2-Enhanced Co3O4 Nanoplate via p–n Junctions

Author:

Ran Mengran1,Yuan Zhenyu1ORCID,Zhu Hongmin1,Gao Hongliang1,Meng Fanli1234ORCID

Affiliation:

1. College of Information Science and Engineering, Northeastern University, Shenyang 110819, China

2. Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao 066004, China

3. National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang 110819, China

4. Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang110819, China

Abstract

This study reports a novel Ni(OH)2/Co3O4 heterostructured nanomaterial synthesized through a simple two-step hydrothermal method combined with subsequent heat treatment. The Ni(OH)2/Co3O4 heterostructured nanomaterial showed excellent performance in the detection of xylene gas. XRD, SEM, and EDS characterized the crystal structure, microstructure, and composition elements of Co3O4 and Ni(OH)2/Co3O4, and the gas sensing properties of the Co3O4 sensor and Ni(OH)2/Co3O4 sensor were systematically tested. The test results indicate the Ni(OH)2/Co3O4 sensor has an optimal operating temperature of 175 °C, which is 10 °C lower than that of the Co3O4 sensor; has a response of 14.1 to 100 ppm xylene, which is 7-fold higher than that of the Co3O4 sensor; reduces the detection limit of xylene from 2 ppm to 100 ppb; and has at least a 4-fold higher response to xylene than other gases. The Ni(OH)2/Co3O4 nanocomposite exerts the excellent catalytic performance of two-dimensional nanomaterial Ni(OH)2, solves the deficiency in the electrical conductivity of Ni(OH)2 materials, and realizes the outstanding sensing performance of xylene, while the construction of the p–n heterojunction between Ni(OH)2 and Co3O4 also improves the sensing performance of the material. This study provides a strategy for designing high-performance xylene gas sensors using two-dimensional Ni(OH)2 materials.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities in China

111 Project

Hebei Natural Science Foundation

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3