MoS2@Au as Label for Sensitive Sandwich-Type Immunoassay of Neuron-Specific Enolase

Author:

Wang Yingying1,Wang Huixin1,Bai Yaliang1,Zhao Guanhui2,Zhang Nuo2,Zhang Yong3ORCID,Wang Yaoguang1ORCID,Chi Hong1

Affiliation:

1. Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China

2. Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China

3. Provincial Key Laboratory of Rural Energy Engineering in Yunnan, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China

Abstract

Neuron-specific enolase (NSE) has gained extensive attention as a reliable target for detecting small cell carcinoma of lungs. In this paper, an electrochemical immunoassay method based on molybdenum disulfide (MoS2) is proposed to detect NSE sensitively. By an in-situ growth method, MoS2 and Au nanoclusters (Au NCs) were composited to form a MoS2@Au nanozyme, and then the secondary antibodies were modified. Primary antibodies were immobilized on amino-reduced graphene oxides to capture NSE. The flower-like MoS2 nanozyme provided abundant sites to load Au NCs and catalyze the decomposition of H2O2, which were beneficial to amplify an amperometric response as well as build up sensitivity. Under optimum conditions, the detection range of this strategy was 0.1 pg·mL−1–10 ng·mL−1 and the limit of detection was 0.05 pg·mL−1. This sensing strategy achieved the prospect of sensitively detecting NSE. Moreover, the prepared electrochemical immunosensor provides a theoretical basis and technical support for the detection of other disease markers.

Funder

National Natural Science Foundation of China

Shandong Provincial Natural Science Foundation

Science, Education and Industry Integration Innovation Pilot Project from Qilu University of Technology

Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Province

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3