Preparation and Application of 2D MXene-Based Gas Sensors: A Review

Author:

Li Qingting,Li Yanqiong,Zeng Wen

Abstract

Since MXene (a two-dimensional material) was discovered in 2011, it has been favored in all aspects due to its rich surface functional groups, large specific surface area, high conductivity, large porosity, rich organic bonds, and high hydrophilicity. In this paper, the preparation of MXene is introduced first. HF etching was the first etching method for MXene; however, HF is corrosive, resulting in the development of the in situ HF method (fluoride + HCl). Due to the harmful effects of fluorine terminal on the performance of MXene, a fluorine-free preparation method was developed. The increase in interlayer spacing brought about by adding an intercalator can affect MXene’s performance. The usual preparation methods render MXene inevitably agglomerate and the resulting yields are insufficient. Many new preparation methods were researched in order to solve the problems of agglomeration and yield. Secondly, the application of MXene-based materials in gas sensors was discussed. MXene is often regarded as a flexible gas sensor, and the detection of ppb-level acetone at room temperature was observed for the first time. After the formation of composite materials, the increasing interlayer spacing and the specific surface area increased the number of active sites of gas adsorption and the gas sensitivity performance improved. Moreover, this paper discusses the gas-sensing mechanism of MXene. The gas-sensing mechanism of metallic MXene is affected by the expansion of the lamellae and will be doped with H2O and oxygen during the etching process in order to become a p-type semiconductor. A p-n heterojunction and a Schottky barrier forms due to combinations with other semiconductors; thus, the gas sensitivities of composite materials are regulated and controlled by them. Although there are only several reports on the application of MXene materials to gas sensors, MXene and its composite materials are expected to become materials that can effectively detect gases at room temperature, especially for the detection of NH3 and VOC gas. Finally, the challenges and opportunities of MXene as a gas sensor are discussed.

Funder

Science and Technology Research Program of Chongqing Municipal Education Commission

Graduate Scientific Research and Innovation Foundation of Chongqing

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3