Abstract
Dissolved gas analysis (DGA) is recognized as one of the most reliable methods in transformer fault diagnosis technology. In this paper, three characteristic gases of transformer oil (CO, C2H4, and CH4) were used in conjunction with a Cr-decorated InN monolayer according to first principle calculations. The adsorption performance of Cr–InN for these three gases were studied from several perspectives such as adsorption structures, adsorption energy, electron density, density of state, and band gap structure. The results revealed that the Cr–InN monolayer had good adsorption performance with CO and C2H4, while the band gap of the monolayer slightly changed after the adsorption of CO and C2H4. Additionally, the adsorption property of the Cr–InN monolayer on CH4 was acceptable and a significant response was simultaneously generated. This paper provides the first insights regarding the possibility of Cr-doped InN monolayers for the detection of gases dissolved in oil.
Funder
Fundamental Research Funds for the Central Universities
Subject
Physical and Theoretical Chemistry,Analytical Chemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献