Chemosensory Optode Array Based on Pluronic-Stabilized Microspheres for Differential Sensing

Author:

Kalinowska AleksandraORCID,Wicik Magdalena,Matusiak Patrycja,Ciosek-Skibińska PatrycjaORCID

Abstract

Differential sensing techniques are becoming nowadays an attractive alternative to classical selective recognition methods due to the “fingerprinting” possibility allowing identifying various analytes without the need to fabricate highly selective binding recognition sites. This work shows for the first time that surfactant-based ion-sensitive microspheres as optodes in the microscale can be designed as cross-sensitive materials; thus, they are perfect candidates as sensing elements for differential sensing. Four types of the newly developed chemosensory microspheres—anion- and cation-selective, sensitive toward amine- and hydroxyl moiety—exhibited a wide range of linear response (two to five orders of magnitude) in absorbance and/or fluorescence mode, great time stability (at least 2 months), as well as good fabrication repeatability. The array of four types of chemosensitive microspheres was capable of perfect pattern-based identification of eight neurotransmitters: dopamine, epinephrine, norepinephrine, γ-aminobutyric acid (GABA), acetylcholine, histamine, taurine, and phenylethylamine. Moreover, it allowed the quantification of neurotransmitters, also in mixtures. Its selectivity toward neurotransmitters was studied using α- and β-amino acids (Ala, Asp, Pro, Tyr, taurine) in simulated blood plasma solution. It was revealed that the chemosensory optode set could recognize subtle differences in the chemical structure based on the differential interaction of microspheres with various moieties present in the molecule. The presented method is simple, versatile, and convenient, and it could be adopted to various quantitative and qualitative analytical tasks due to the simple adjusting of microspheres components and measurement conditions.

Funder

National Science Centre, Poland

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3