Easy-to-Use Chemiluminescent-Based Assay for a Rapid and Low-Cost Evaluation of the Antioxidant Activity of Cosmetic Products

Author:

Pour Seyedeh Rojin Shariati1,Calabria Donato2ORCID,Nascetti Augusto3ORCID,Caputo Domenico4ORCID,De Cesare Giampiero4ORCID,Guardigli Massimo25,Zangheri Martina167ORCID,Mirasoli Mara15ORCID

Affiliation:

1. Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy

2. Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy

3. School of Aerospace Engineering, Sapienza University of Rome, Via Salaria 851, I-00138 Rome, Italy

4. Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Via Eudossiana 18, I-00184 Rome, Italy

5. Interdepartmental Centre for Industrial Research in Renewable Resources, Environment, Sea, and Energy (CIRI FRAME), Alma Mater Studiorum, University of Bologna, Via Sant’Alberto 163, I-48123 Ravenna, Italy

6. Interdepartmental Centre for Industrial Agrofood Research (CIRI AGRO), Alma Mater Studiorum, University of Bologna, Via Quinto Bucci 336, I-47521 Cesena, Italy

7. Interdepartmental Centre for Industrial Research in Advanced Mechanical Engineering Applications and Materials Technology (CIRI MAM), Alma Mater Studiorum, University of Bologna, Viale Risorgimento 2, I-40136 Bologna, Italy

Abstract

New cosmetic formulations are continuously requested by the market and the ingredients are constantly evolving. Recently the use of antioxidants has gained success and, in this context, analytical methods able to quickly and easily assess the antioxidant activity of cosmetics would make it possible to carry out analyses on new formulations even within the manufacturing process without the need for specialized laboratories and personnel, thus evaluating directly on-site the effectiveness and the shelf life of products. In this work, a chemiluminescent inhibition assay was developed for determining the total antioxidant activity in cosmetic products. The method was based on the luminol/enhancers/hydrogen peroxide/horseradish peroxidase chemiluminescent system, which generates light signals measurable through simple and compact instrumentation. The formation of the chemiluminescent signal is inhibited by the presence of antioxidant substances while it is restored once all the antioxidant molecules have been oxidized. The time of appearance of the light signal is related to the total antioxidant activity. The assay was carried out exploiting an integrated device comprising a microwell plate coupled with an array of amorphous silicon hydrogenated photosensors enclosed in a mini-dark box. The method was optimized in terms of concentrations and volumes of the required reagents and sample pre-treatment. A calibration curve was generated taking as a reference the antioxidant activity of ascorbic acid obtaining a detection limit of 10 µM. The developed method was applied to cosmetic products currently on the market as well as on spiked samples in order to evaluate the performance of the methods in terms of sensitivity, accuracy, and reproducibility.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3