Optimization of Plastic Scintillator for Detection of Gamma-Rays: Simulation and Experimental Study

Author:

Min Sujung,Kim Youngsu,Ko Kwang-Hoon,Seo Bumkyung,Cheong JaeHakORCID,Roh ChanghyunORCID,Hong Sangbum

Abstract

Plastic scintillators are widely used in various radiation measurement applications, and the use of plastic scintillators for nuclear applications including decommissioning, such as gamma-ray detection and measurement, is an important concern. With regard to efficient and effective gamma-ray detection, the optimization for thickness of plastic scintillator is strongly needed. Here, we elucidate optimization of the thickness of high-performance plastic scintillator using high atomic number material. Moreover, the EJ-200 of commercial plastic scintillators with the same thickness was compared. Two computational simulation codes (MCNP, GEANT4) were used for thickness optimization and were compared with experimental results to verify data obtained by computational simulation. From the obtained results, it was confirmed that the difference in total counts was less than 10% in the thickness of the scintillator of 50 mm or more, which means optimized thickness for high efficiency gamma-ray detection such as radioactive 137Cs and 60CO. Finally, simulated results, along with experimental data, were discussed in this study. The results of this study can be used as basic data for optimizing the thickness of plastic scintillators using high atomic number elements for radiation detection and monitoring.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3