Additive Manufacturing as a Means of Gas Sensor Development for Battery Health Monitoring

Author:

Lupan Oleg,Krüger Helge,Siebert LeonardORCID,Ababii NicolaiORCID,Kohlmann NiklasORCID,Buzdugan Artur,Bodduluri Mani Teja,Magariu Nicolae,Terasa Maik-IvoORCID,Strunskus ThomasORCID,Kienle Lorenz,Adelung Rainer,Hansen Sandra

Abstract

Lithium-ion batteries (LIBs) still need continuous safety monitoring based on their intrinsic properties, as well as due to the increase in their sizes and device requirements. The main causes of fires and explosions in LIBs are heat leakage and the presence of highly inflammable components. Therefore, it is necessary to improve the safety of the batteries by preventing the generation of these gases and/or their early detection with sensors. The improvement of such safety sensors requires new approaches in their manufacturing. There is a growing role for research of nanostructured sensor’s durability in the field of ionizing radiation that also can induce structural changes in the LIB’s component materials, thus contributing to the elucidation of fundamental physicochemical processes; catalytic reactions or inhibitions of the chemical reactions on which the work of the sensors is based. A current method widely used in various fields, Direct Ink Writing (DIW), has been used to manufacture heterostructures of Al2O3/CuO and CuO:Fe2O3, followed by an additional ALD and thermal annealing step. The detection properties of these 3D-DIW printed heterostructures showed responses to 1,3-dioxolan (DOL), 1,2-dimethoxyethane (DME) vapors, as well as to typically used LIB electrolytes containing LiTFSI and LiNO3 salts in a mixture of DOL:DME, as well also to LiPF6 salts in a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC) at operating temperatures of 200 °C–350 °C with relatively high responses. The combination of the possibility to detect electrolyte vapors used in LIBs and size control by the 3D-DIW printing method makes these heterostructures extremely attractive in controlling the safety of batteries.

Funder

WTSH and the EUSH

Swedish Radiation Safety Authority

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3