Preparation and Hydrogen-Sensitive Property of WO3/Graphene/Pd Ternary Composite

Author:

Wang Lin12,An Fei2,Liu Xinmei1,Zhang Dongzhi3ORCID,Yang Zhe2

Affiliation:

1. College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China

2. State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao 266071, China

3. College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China

Abstract

Hydrogen (H2) is a renewable energy source that has the potential to reduce greenhouse gas emissions. However, H2 is also highly flammable and explosive, requiring sensitive and safe sensors for its detection. This work presents the synthesis and characterization of WO3/graphene binary and WO3/graphene/Pd (WG-Pd) ternary nanocomposites with varying graphene and Pd contents using the microwave-assisted hydrothermal method. The excellent catalytic efficacy of Pd nanoparticles facilitated the disintegration of hydrogen molecules into hydrogen atoms with heightened activity, consequently improving the gas-sensing properties of the material. Furthermore, the incorporation of graphene, possessing high conductivity, serves to augment the mobility of charge carriers within the ternary materials, thereby expediting the response/recovery rates of gas sensors. Both graphene and Pd nanoparticles, with work functions distinct from WO3, engender the formation of a heterojunction at the interface of these diverse materials. This enhances the efficacy of electron–hole pair separation and further amplifies the gas-sensing performance of the ternary materials. Consequently, the WG-Pd based sensors exhibited the best gas-sensing performance when compared to anther materials, such as a wide range of hydrogen concentrations (0.05–4 vol.%), a short response time and a good selectivity below 100 °C, even at room temperature. This result indicates that WG-Pd ternary materials are a promising room-temperature hydrogen-sensing materials for H2 detection.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3