The Influence of Carboxyl-Functionalized Carbon Dots on Ethanol Selectivity in Gas Sensing

Author:

Tian Futong1,Ma Guoxing1,Zhao Xing1,Gao Jie1,Zhang Jingwen1,Suo Hui1,Zhao Chun1

Affiliation:

1. State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China

Abstract

For semiconductor tin dioxide (SnO2) materials, the oxygen adsorption theory often struggles to explain their selectivity towards specific gases. Therefore, it is worth considering altering the surface functional groups of SnO2 to modify its surface state and enhance its selectivity towards specific gases. Due to the rich functional groups on the surfaces of carbon dots, this study employed a hydrothermal method to prepare three types of carbon dots with varying carboxyl functional group contents by adjusting the hydrothermal time. These carbon dots were then used as dopants and combined with SnO2 to create composite gas-sensitive devices. The gas-sensing test results indicate that the introduction of carboxyl functional groups can enhance the selectivity of SnO2 towards ethanol. Furthermore, at any operating temperature within the range of 150–300 °C, the higher the carboxyl functional group content on the surface of carbon dot-doped SnO2, the higher the sensitivity towards ethanol. By employing density functional theory (DFT), the interaction energies between the surfaces of carbon dots and surface carboxyl groups with the target gas were calculated. These calculations validated the gas-sensing test results, confirming that the presence of carboxyl functional groups enhances the selectivity towards ethanol. The results of this study can provide new insights into the research on the selective mechanism of gas-sensitive materials.

Funder

Jilin province science and technology development projects

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3