Electrochemical Sensing of Zinc Oxide and Peroxide Nanoparticles: Modification with Meso-tetrakis(4-carboxyphenyl) Porphyrin

Author:

Wang Kailai1,Lai Edward P. C.1ORCID

Affiliation:

1. Department of Chemistry, Ottawa-Carleton Chemistry Institute, Carleton University, Ottawa, ON K1S 5B6, Canada

Abstract

An electrochemical method was developed to investigate the redox properties of zinc oxide (ZnO), zinc peroxide (ZnO2), and sodium-doped zinc peroxide (Na-ZnO2) nanoparticles. The intention was to distinguish the identity of these nanoparticles among themselves, and from other transition metal oxide nanoparticles (TMONPs). Analysis of 3 mM sodium metabisulfite by cyclic voltammetry (CV) produced anodic/cathodic peak currents that are linearly related to the mass of deposited nanoparticles. A graphite working electrode was essential to the oxidation of metabisulfite. ZnO nanoparticles were crucial to the enhancement of metabisulfite oxidation current, and PPy coating could suppress the current enhancement by covering all nanoparticle surfaces. Furthermore, meso-tetrakis(4-carboxyphenyl) porphyrin was demonstrated to be a good chemical reagent that facilitates the differentiation of ZnO from ZnO2 and nanoparticles by CV analysis.

Funder

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3