Synthesis of a Single Benzene-Based Fluorophore for Selective Recognition of Al Ions

Author:

Lee Yena,Cho Eunbee,Jo Seonyoung,Lee Dong Hoon,Lee Taek SeungORCID

Abstract

Though 2,5-dihydroxyterephthalic acid (DHT) is composed of a single benzene molecule, it is blue-emissive in common organic solvents and in the solid state. Like most organic fluorophores, DHT is not soluble in water, which limits its versatile use in metal ion detection in an aqueous medium. To improve the water solubility of DHT and its use as a molecular sensor in aqueous solutions, its deprotonated form, DHT-K, was synthesized through the simple one-pot reaction of DHT with KOH. Compared with DHT, DHT-K was highly soluble in water and emitted yellow fluorescence in the solution and the solid. In addition, DHT-K showed high selectivity for Al ions, exhibiting fluorescence wavelength changes from 540 to 495 nm depending on the Al ion concentration. A linear relationship between the fluorescence intensity of DHT-K and Al ion concentration was established ranging from 18.96 to 247 μM with a detection limit of 1.84 µM. The binding stoichiometry between DHT-K and Al ions was determined by Job’s plot and found to be 1:2. Upon exposure to Al ions, DHT-K showed significant changes in fluorescence color and emission wavelength, whereas no fluorescence changes were observed by the addition of various metal ions such as Zn2+, Mg2+, Ca2+, Cu2+, Fe3+, and Co2+. Thus, DHT-K can be applied as a fluorescent sensor that can selectively detect Al ions in aqueous solutions.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3