Abstract
Plasmonics can bind light to their surface while increasing its intensity. The confinement and enhancement of light allows high–density, independent, subwavelength sensor elements to be constructed in micrometer–sized arrays. Plasmonic nanostructures have been widely used in the sensing field because of their fast, real–time and label–free characteristics. Numerous plasmonic metasensors have been configured for next–generation technologies since the emergence of metamaterials and metasurfaces. Among these applications, the development of high–sensitivity sensors based on new physical mechanisms has received tremendous interest recently. This review focuses on high–sensitivity plasmonic nanosensors and metasensors based on new physical mechanisms, especially based on Fano resonance and the exceptional point (EP). The asymmetric Fano resonance generated by the interference of different resonance modes has a narrower bandwidth, while an EP occurs whenever two resonant modes coalesce both in their resonant frequency and their rate of decay or growth. Both physical mechanisms could tremendously improve the sensitivity of the plasmonic sensors. We summarize the working principles, the latest development status and the development trends of these plasmonic nanosensors and metasensors. It is believed that these new sensing mechanisms can inspire more fruitful scientific research.
Funder
National Natural Science Foundation of China
Science and Technology Commission Shanghai Municipality
Subject
Physical and Theoretical Chemistry,Analytical Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献