Abstract
Novel anthracene-based Schiff base derivative (4-(anthracen-9-ylmethylene) amino)-5-phenyl-4H-1,2,4-triazole-3-thiol; AT2) is synthesized and utilized as an aggregation-induced emission-enhancement (AIEE) active probe to detect Zn2+ and Tyrosine. Ultraviolet-visible absorption/photoluminescence (UV-vis/PL) spectroscopy studies on the AIEE property of AT2 (in ethanol) with increasing water fractions (fw: 0–97.5%) confirm the J-type aggregation. Excellent sensor selectivity of AT2 to Zn2+ and its reversibility with Tyrosine are demonstrated with PL interrogations. 2:1 and 1:1 stoichiometry and binding sites of AT2-Zn2+ and Tyrosine-Zn2+ complexes are elucidated from Job plots, HR-mass, and 1H-NMR results. Nanomolar-level detection limits (LODs) of Zn2+ (179 nM) and Tyrosine (667 nM) and association constants (Kas) of 2.28 × 10−6 M−2 (for AT2-Zn2+) and 1.39 × 10−7 M−1 (for Tyrosine-Zn2+) are determined from standard deviation and linear fittings. Nanofiber formation in AIEE and aggregated/dispersed nanoparticles in the presence of the Zn2+/Tyrosine are supported by scanning-electron microscope (SEM), transmission-electron microscope (TEM), atomic-force microscope (AFM), and dynamic-light scattering (DLS) investigations. Density-functional theory (DFT) studies confirm an “On-Off” twisted intramolecular charge transfer/photo-induced electron transfer (TICT/PET) and “On-Off-On” PET mechanisms for AIEE and sensors, respectively. B16-F10 cellular and zebrafish imaging are conducted to support the applications of AIEE and sensors.
Funder
Ministry of Science and Technology Taiwan
Subject
Physical and Theoretical Chemistry,Analytical Chemistry
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献