Au-Decorated Polyaniline-ZnO Electrospun Composite Nanofiber Gas Sensors with Enhanced Response to NO2 Gas

Author:

Bonyani Maryam,Zebarjad Seyed MojtabaORCID,Janghorban Kamal,Kim Jin-Young,Kim Hyoun Woo,Kim Sang SubORCID

Abstract

Ternary systems are less studied for sensing applications due to complex synthesis procedures. However, they have more sources of resistance modulation, leading to an enhanced gas response. In this study, a ternary system, namely Au-decorated ZnO-polyaniline (PANI) composite nanofibers with different amounts of PANI (10, 25, and 50 wt.%) were synthesized for NO2 gas sensing studies. First, ZnO nanofibers were synthesized by electrospinning, and then an Au layer (9 nm) was coated on the ZnO nanofibers. Finally, PANI was coated onto the prepared Au-decorated ZnO nanofibers. NO2 gas sensing investigations indicated that the sensor with 25 wt.% PANI had the best response to NO2 gas at 300 °C. In addition, the optimized sensor exhibited high selectivity to NO2 gas. The improved performance of the optimal gas sensor was attributed to the role of Au, the formation of ZnO-PANI heterojunctions, and the optimal amount of PANI. The promising effect of this ternary system for NO2 sensing was demonstrated, and it can be extended to other similar systems.

Funder

Korea Polar Research Institute

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3