Umbelliferone-Based Fluorescent Probe for Selective Recognition of Hydrogen Sulfide and Its Bioimaging in Living Cells and Zebrafish

Author:

Fang Yuyu,Luo Fan,Cao Zhixing,Peng Cheng,Dehaen WimORCID

Abstract

Hydrogen sulfide (H2S) plays a crucial role in a variety of physiological and pathological processes, similar to other gaseous signaling molecules. The significant pathophysiological functions of H2S have sparked a great deal of interest in the creation of fluorescent probes for H2S monitoring and imaging. Using 3-cyanoumbelliferone as the push–pull fluorophore and a dinitrophenyl substituent as the response site, herein we developed a umbelliferone-based fluorescent probe 1 for H2S, which exhibited a remarkable turn-on fluorescence response with a low detection limit (79.8 nM), high sensitivity and selectivity. The H2S-sensing mechanism could be attributed to the cleavage of the ether bond between the dinitrophenyl group and the umbelliferone, leading to the recovery of an intermolecular charge transfer (ICT) process. Moreover, the probe had negligible cytotoxicity and good cell membrane permeability, which was successfully applied to image H2S in MCF-7 cells and zebrafish.

Funder

National Natural Science Foundation of China

Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine

China Postdoctoral Science Foundation

KU Leuven

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3