Shungite Paste Electrodes: Basic Characterization and Initial Examples of Applicability in Electroanalysis

Author:

Bártová Michaela1,Bartoš Martin1,Švancara Ivan1ORCID,Sýs Milan1ORCID

Affiliation:

1. Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic

Abstract

This article introduces a new type of carbon paste electrode prepared from black raw shungite. In powdered form, this carbonaceous material was mixed with several nonpolar binders. The resulting shungite pastes were microscopically and electrochemically characterized. Mixtures of several pasting liquids with different contents of shungite powder were tested to select the optimal composition and compared with other types of carbon paste-based electrodes made of graphite and glassy carbon powder. In terms of physical and mechanical properties, shungite paste electrodes (ShPEs) formed a composite mass being like dense pastes from glassy carbon microspheres, having harder consistency than that of traditional graphitic carbon pastes. The respective electrochemical measurements with ShPEs were based on cyclic voltammetry of ferri-/ferro-cyanide redox pairs, allowing us to evaluate some typical parameters such as electrochemically active surface area, double-layer capacitance, potential range in the working media given, heterogeneous rate constant, charge-transfer coefficient, exchange current density, and open-circuit potential. The whole study with ShPEs was then completed with three different examples of possible electroanalytical applications, confirming that the carbon paste-like configuration with powdered shungite represents an environmentally friendly (green) and low-cost electrode material with good stability in mixed aqueous-organic mixtures, and hence with interesting prospects in electroanalysis of biologically active organic compounds. It seems that similar analytical parameters of the already established variants of carbon paste electrodes can also be expected for their shungite analogues.

Funder

Faculty of Chemical Technology, University of Pardubice

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3