Organelle Targeting Self-Assembled Fluorescent Probe for Anticancer Treatment

Author:

Hasan Md Sajid1ORCID,Kim Sangpil1,Lim Chaelyeong1,Lee Jaeeun1,Seu Min-Seok1,Ryu Ja-Hyoung1ORCID

Affiliation:

1. Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea

Abstract

Organic fluorescent probes have attracted attention for bioimaging due to their advantages, including high sensitivity, biocompatibility, and multi-functionality. However, some limitations related to low signal-to-background ratio and false positive and negative signals make them difficult for in situ target detection. Recently, organelle targeting self-assembled fluorescent probes have been studied to meet this demand. Most of the dye molecules suffer from a quenching effect, but, specifically, some dyes like Pyrene, Near-Infrared (NIR), Nitrobenzoxadiazole (NBD), Fluorescein isothiocyanate (FITC), Naphthalenediimides (NDI), and Aggregation induced emission (AIE) show unique characteristics when they undergo self-assembly or aggregation. Therefore, in this review, we classified the molecules according to the dye type and provided an overview of the organelle-targeting strategy with an emphasis on the construction of fluorescent nanostructures within complex cellular environments. Results demonstrated that fluorescent probes effectively target and localized inside the organelles (mitochondria, lysosome, and golgi body) and undergo self-assembly to form various nanostructures that possess bio-functionality with long retention time, organelles membrane disruption/ROS generation/enzyme activity suppression ability, and enhanced photodynamic properties for anticancer treatment. Furthermore, we systematically discussed the challenges that remain to be resolved for the high performance of these probes and mentioned some of the future directions for the design of molecules.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3