Pd-GaSe and Pd3-GaSe Monolayers: Two Promising Candidates for Detecting Dissolved Gases in Transformer Oil

Author:

Hou Tianyu,Zeng Wen,Zhou QuORCID

Abstract

In this paper, the adsorption behaviors of three gases (H2, CO, and C2H2) decomposed by the transformer oil on Pd-GaSe and Pd3-GaSe monolayers were calculated by density functional theory. Compared with Pd single-atom doping, Pd3 cluster doping changed the original structure and charge distribution to a greater extent, and more obviously improved the conductivity. According to the analysis of adsorption energy, charge transfer and deformation charge density, the results show that the two doped structures have better adsorption performance for the three gas molecules (H2, CO, and C2H2) than the intrinsic GaSe monolayer. Compared with Pd-GaSe, Pd3-GaSe showed stronger adsorption property for the three gases. Analysis of frontier molecular orbitals and recovery characteristics shows that Pd3-GaSe can be used as an ideal gas sensitive material for H2 detection because of its good desorption properties and obvious conductivity changes. Pd-GaSe can be used as a disposable resistive sensor for CO. Pd3-GaSe is a kind of sensing material suitable for disposable resistance sensors for CO and C2H2. These two doped structures have great application potential in gas adsorption and detection, and provide indications for further study on gas sensor detection by means of metal-doped GaSe monolayer.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3