Design and Evaluation of Low-Power Co3O4 Gas Sensing Element as a Part of Cyber Physical Systems

Author:

Moschogiannaki MarilenaORCID,Vardakis George,Gagaoudakis EmmanouilORCID,Papadakis Stefanos,Binas VassiliosORCID

Abstract

Physical processes working in parallel with digital ones have transformed the way we view systems and have led to the creation of applications that boost the quality of people’s lives, increase security as well as decrease production costs of goods. Critical to this evolution is the cost decrease in the components of such systems, among which are gas sensors. In this work, a custom-made Co3O4 gas sensing element is presented, which can potentially be used as part of a cyber-physical system (CPS) for O3 monitoring. To investigate its performance, a CPS is developed using low-cost, low-power micro-controller units (MCUs) and comparisons both with the laboratory equipment and commercial off-the-shelf (COTS) ozone sensors are provided. The experiments show that the Co3O4 sensor works at room temperature with low input voltage and low power consumption when used with the proposed MCUs. Moreover, an enhanced gas sensing performance against ozone is observed under low-pressure conditions due to the detection of low ozone concentrations (85.90 ppb) and good sensor response (113.1%) towards 1100 ppb O3. However, the drawbacks that need improvement relate to the kinetics of the charge carriers, which affect the response time and recovery behavior. The effect of humidity needs to be clarified in further works.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3