Spinel Magnesium Ferrite (MgFe2O4): A Glycine-Assisted Colloidal Combustion and Its Potentiality in Gas-Sensing Application

Author:

Nadargi DigambarORCID,Umar AhmadORCID,Nadargi Jyoti,Patil Jayvant,Mulla Imtiaz,Akbar SheikhORCID,Suryavanshi Sharad

Abstract

Herein, we describe the facile synthesis of spinel MgFe2O4 ferrite and its potential use as a gas sensor using a straightforward and reliable sol–gel approach, i.e., the glycine-assisted auto-combustion route. The novelty in obtaining the sensing material via the auto-combustion route is its inherent simplicity and capability to produce the material at an industry scale. The said cost-effective process makes use of simple metal salts (Mg and Fe-nitrates) and glycine in an aqueous solution, which leads to the formation of spinel MgFe2O4 ferrite. A single-phase crystallinity with crystallite sizes ranging between 36 and 41 nm was observed for the synthesized materials using the X-ray diffraction (XRD) technique. The porous morphologies of the synthesized materials caused by auto-ignition during the combustion process were validated by the microscopic investigations. The EDS analysis confirmed the constituted elements such as Mg, Fe, and O, without any impurity peaks. The gas-sensing ability of the synthesized ferrites was examined to detect various reducing gases such as LPG, ethanol, acetone, and ammonia. The ferrite showed the highest response (>80%) toward LPG with the response and recovery times of 15 s and 23 s, respectively. Though the sensor responded low toward ammonia (~30%), its response and recovery times were very quick, i.e., 7 s and 9 s, respectively. The present investigation revealed that the synthesized ferrite materials are good candidates for fabricating high-performance sensors for reducing gases in real-world applications.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3