Hydrothermal Synthesis and Annealing Effect on the Properties of Gas-Sensitive Copper Oxide Nanowires

Author:

Claros MarthaORCID,Gràcia IsabelORCID,Figueras EduardORCID,Vallejos Stella

Abstract

In this study, we report a straightforward and reproducible hydrothermal synthesis of copper oxide nanowires, their morphological and chemical characterization, and their application in gas sensing. Results show that the hydrothermal process is mainly influenced by the reaction time and the concentration of the reducing agent, demonstrating the synthesis of fine and long nanowires (diameter of 50–200 nm and length of 25 µm) after 10 h of reaction with 0.1 M of pyrrole. Two different annealing temperatures were tested (205 and 450 °C) and their effect on the morphology, chemical composition, and crystal size of the nanowires was analyzed by SEM, XPS, and XRD techniques, respectively. The analysis shows that the Cu2+ oxidation state is mainly obtained at the higher annealing temperature, and the nanowires’ shape suffers a transformation due to the formation of agglomerated crystallites. The gas sensing tests for acetone, ethanol, toluene, and carbon monoxide show preferential response and sensitivity to acetone and ethanol over the other analytes. The annealing temperature proves to have a higher influence on the stability of the nanowires than on their gas sensitivity and selectivity, showing better medium-term stability for the nanowires annealed at 450 °C.

Funder

Czech Science Foundation

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3