Flexible Wearable Sensors Based in Carbon Nanotubes Reinforced Poly(Ethylene Glycol) Diglycidyl Ether (PEGDGE): Analysis of Strain Sensitivity and Proof of Concept

Author:

del Bosque AntonioORCID,Sánchez-Romate Xoan F.ORCID,Sánchez MaríaORCID,Ureña AlejandroORCID

Abstract

The electromechanical capabilities of carbon nanotube (CNT) doped poly(ethylene glycol) diglycidyl ether (PEGDGE) have been explored. In this regard, the effect of both CNT content and curing conditions were analyzed. The electrical conductivity increased both with CNT content and curing temperature due to the lower gel time that leads to a lower reaggregation during curing. More specifically, the percolation threshold at 160 and 180 °C curing temperatures is below 0.01 wt.%, and this limit increases up to 0.1 wt.% at 140 °C for an 8 h curing cycle. Moreover, the strain monitoring capabilities were investigated, and the effect of contact resistance was also analyzed. The electrical contacts made with silver ink led to higher values of gauge factor (GF) but presented some issues at very high strains due to their possible detachment during testing. In every case, GF values were far above conventional metallic gauges with a very significant exponential behavior, especially at low CNT content due to a prevalence of tunneling mechanisms. Finally, a proof of concept of fingers and knee motion monitoring was carried out, showing a high sensitivity for human motion sensing.

Funder

Agencia Estatal de Investigación

Comunidad de Madrid

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3