Abstract
Lamiaceae belong to the species-richest family of flowering plants and harbor many species that are used as herbs or in medicinal applications such as basils or mints. The evolution of this group has been driven by chemical speciation, mainly volatile organic compounds (VOCs). The commercial use of these plants is characterized by adulteration and surrogation to a large extent. Authenticating and discerning this species is thus relevant for consumer safety but usually requires cumbersome analytics, such as gas chromatography, often coupled with mass spectroscopy. Here, we demonstrate that quartz-crystal microbalance (QCM)-based electronic noses provide a very cost-efficient alternative, allowing for fast, automated discrimination of scents emitted from the leaves of different plants. To explore the range of this strategy, we used leaf material from four genera of Lamiaceae along with lemongrass, which is similarly scented but from an unrelated outgroup. To differentiate the scents from different plants unambiguously, the output of the six different SURMOF/QCM sensors was analyzed using machine learning (ML) methods together with a thorough statistical analysis. The exposure and purging of data sets (four cycles) obtained from a QCM-based, low-cost homemade portable e-Nose were analyzed using a linear discriminant analysis (LDA) classification model. Prediction accuracy with repeated test measurements reached values of up to 0%. We show that it is possible not only to discern and identify plants at the genus level but also to discriminate closely related sister clades within a genus (basil), demonstrating that an e-Nose is a powerful device that can safeguard consumer safety against dangers posed by globalized trade.
Funder
Deutsche Forschungsgemeinschaft
Alexander von Humboldt-Stiftung
Subject
Physical and Theoretical Chemistry,Analytical Chemistry
Reference48 articles.
1. ALLYL ISOTHIOCYANATE RELEASE AND THE ALLELOPATHIC POTENTIAL OF BRASSICA NAPUS (BRASSICACEAE)
2. Pharmacognosy, Phytochemistry, Medicinal Plants;Bruneton,1995
3. The Families and Genera of Vascular Plants;Kubitzki,1990
4. What Is a Superfood Anyway? Six Key Ingredients for Making a Food “Super”
5. Heilpflanzen der Ayurvedischen Medizin;Zoller,2017
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献