A Gas Sensor Based on Network Nanowire for H2S Monitor in Construction Waste Landfill

Author:

Ren Pengyu,Shi QingweiORCID,Qi Lingling

Abstract

As an extremely harmful gas, H2S gas is the major pollutant in construction waste landfill. Herein, a one-dimensional oxide nanomaterial was produced from a simple wet chemical method to serve as a H2S gas sensing material. The SEM observation indicates that the nanomaterial with network structure is constructed by a lot of nanowires with an approximate diameter from 24 nm to 40 nm. The sensing film was formed on a ceramic substrate using a slurry composed of the as-prepared network nanowires. Furthermore, a gas sensing measurement was carried out to determine the gas sensing performances towards the H2S gas. The detection results at different working temperature towards various gas concentrations demonstrate that the network nanowires-based sensor exhibits a higher gas response to H2S as compared to that of the rod-like one. The optimum working temperature of the network and rod-like nanomaterials is both 300 °C, and the corresponding maximum gas response is 24.4 and 13.6, respectively. Namely, the gas response of the network-based gas sensor is almost larger than that of the rod-like oxide. Moreover, the network nanowires-based gas sensor display a faster gas response and recovery speed. In addition, the fabricated gas sensors all exhibit excellent repeatability. Such improved sensing properties may offer a promising potential to realize an efficient detection of harmful H2S gas released from construction waste landfill.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of Au Doping on ZnO Nanoporous Structure for H2S Gas Sensing;ECS Journal of Solid State Science and Technology;2023-06-01

2. Smart Nanomaterials and Sensing Devices: An Introduction;Smart Nanostructure Materials and Sensor Technology;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3