Investigating the Temperature-Dependent Kinetics in Humidity-Resilient Tin–Titanium-Based Metal Oxide Gas Sensors

Author:

Gherardi Sandro12ORCID,Astolfi Michele123ORCID,Gaiardo Andrea4ORCID,Malagù Cesare12ORCID,Rispoli Giorgio3ORCID,Vincenzi Donato1ORCID,Zonta Giulia12ORCID

Affiliation:

1. Department of Physics and Earth Science, University of Ferrara, 44122 Ferrara, Italy

2. SCENT S.R.L., 44124 Ferrara, Italy

3. Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy

4. Micro Nano Facility, Bruno Kessler Foundation, 38123 Trento, Italy

Abstract

Humidity is a well-known interference factor in metal oxide (MOX) gas sensors, significantly impacting their performance in various applications such as environmental monitoring and medical diagnostics. This study investigates the effects of adsorbed water on MOX conductivity using two different materials: pure tin oxide (SnO2) and a tin–titanium–niobium oxide mixture (SnTiNb)xO2 (STN). The results reveal that (SnTiNb)xO2 sensors exhibit reduced sensitivity to humidity compared to pure tin oxide, rendering them more suitable for applications where humidity presence is critical. We aimed to shed light on a still controversial debate over the mechanisms involved in the water surface interactions for the aforementioned materials also by exploring theoretical studies in the literature. Experimental analysis involves varying temperatures (100 to 800 °C) to understand the kinetics of surface reactions. Additionally, a brief high-temperature heating method is demonstrated to effectively remove adsorbed humidity from sensor surfaces. The study employs Arrhenius-like plots for graphical interpretation, providing insights into various water adsorption/desorption phenomena. Overall, this research contributes to a deeper understanding of the role of humidity in MOX gas sensor mechanisms and offers practical insights for sensor design and optimization.

Funder

European Union

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3