Progress in Fast and Red Plastic Scintillators

Author:

Hamel MatthieuORCID

Abstract

Radiological detection where Cherenkov residual background can be prominent requires scintillators with increased emission wavelength. Cherenkov residual background precludes the use of UV-emitting sensors such as plastic scintillators. However, the literature is scarce in red-emitting plastic scintillators and only one commercial scintillator is currently available (BC-430, from Saint-Gobain Crystals and Detectors). In addition, X-ray imaging or time-of-flight positron emission tomography (ToF-PET) applications are also demanding on this type (color) of scintillators, but such applications also require that the material displays a fast response, which is not particularly the case for BC-430. We present herein our latest developments in the preparation and characterization of fast and red plastic scintillators for this application. Here, ‘fast’ means nanosecond range decay time and ‘red’ is an emission wavelength shifted towards more than 550 nm. At first, the strategy to the preparation of such material is explained by decomposing the scintillator to fundamental elements. Each stage is then optimized in terms of decay time response, then the elemental bricks are arranged to give plastic scintillator formulations that are compatible with the abovementioned characteristics. The results are compared with the red-emissive BC-430 commercial plastic, and the ultra-fast, violet-emitting BC-422Q 1% plastic. In particular, the first-time use of trans-4-dimethylamino-4′-nitrostilbene in the scintillation field as a red wavelength shifter allowed preparing plastic scintillators with the following properties: λemmax 554 nm, photoluminescence decay time 4.2 ns, and light output ≈ 6100 ph/MeV. This means a scintillator almost as bright as BC-430 but at least three times faster. This new sensor might provide useful properties for nuclear instrumentation.

Funder

Atomic Energy and Alternative Energies Commission

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3