QCM-Based HCl Gas Detection on Dimethylamine-Functionalized Crosslinked Copolymer Films

Author:

Yang JinchulORCID,Park JinyoungORCID

Abstract

In this work, sensing behaviors and mechanisms of two crosslinked copolymers with dimethylamine and dimethylamide functional groups were compared and investigated for their ability to detect hydrogen chloride (HCl) gas. The crosslinked copolymer films were photopolymerized on quartz crystal electrodes using a micro-contact printing technique. The gas sensing behaviors were analyzed by measuring resonant frequency (Δf) of quartz crystal microbalance (QCM). The HCl binding capacity of photopolymerized films, with a mass between 4.6 and 5.9 μg, was optimized. Under optimized film mass conditions, the poly(2-dimethylaminoethyl methacrylate-co-ethylene glycol dimethacrylate) (DMAEMA-co-EGDMA), poly(DMAEMA-co-EGDMA), film, C2-DMA, showed a 13.9-fold higher binding capacity than the poly(N,N-dimethylacrylamide-co-ethylene glycol dimethacrylate, poly(DMAA-co-EGDMA), film, C0-DMA, during HCl gas adsorption. HCl gas was effectively adsorbed on the C2-DMA film because of the formation of tertiary amine salts through protonation and strong ionic bonding. Furthermore, the C2-DMA film exhibited excellent sensitivity, of 2.51 (ng/μg) (1/ppm), and selectivity coefficient (k* = 12.6 for formaldehyde and 13.5 for hydrogen fluoride) compared to the C0-DMA film. According to the experimental results, and due to its high functionality and stability, the C2-DMA film-coated QC electrode could be used as an HCl gas sensor, with low-cost and simple preparation, in future endeavors.

Funder

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3