Preparation and Photoluminescent Properties of Tb3+-Doped Lu2W3O12 and Lu2Mo3O12 Green Phosphors

Author:

Huang Nihui,Lu Guojun,Bai Bihai,Chen Zijun,Zhang Min,Li Yuechan,Cao Chunyan,Xie An

Abstract

Tungstate and molybdate phosphors have received great attention for their excellent photoluminescent properties and thermal stabilities. In the article, Tb3+-activated tungstate and molybdate green phosphors were prepared by a solid-state reaction method at different caline temperatures and were compared and studied. The crystal structures and the morphologies of samples were characterized by X-ray diffraction (XRD) patterns and field emission scanning electron microscopy (FE-SEM) images. The energy-dispersive spectra (EDS) proved the compositions of the prepared samples. The photoluminescence (PL) spectra showed that the PL excitation spectra of Tb3+-doped Lu2W3O12 and Lu2Mo3O12 green phosphors consisted of a broad and strong charge transfer band (CTB) and 4f–5d transitions of Tb3+ in the ultraviolet (UV) wavelength range and some narrowed excitation peaks from the 4f–4f transition of Tb3+ in the near ultraviolet (NUV) wavelength region. The PL emission spectra of the phosphors exhibited the characteristic green emissions owing to the 5D4→7F5 transition of Tb3+ located at about 547 nm. The values of energy gap Eg were calculated based on the diffuse reflection spectra (DRS). The measuring temperature-dependent PL spectra illustrated the thermal stabilities of phosphors. The Tb3+-doped Lu2Mo3O12 phosphor presented normal thermal quenching phenomena and the values of the thermal activation energy Ea were calculated based on the measuring temperature dependent PL emission spectra. The Tb3+-doped Lu2W3O12 phosphor exhibited abnormal thermal enhancing CTB excitation intensity at about 170 °C. Furthermore, the PL decay curves suggested that the lifetime corresponding to the 5D4 level of Tb3+ in the Lu2W3O12 host lattice was longer than that in the Lu2Mo3O12 host lattice. Compared the Tb3+-doped Lu2Mo3O12 phosphor, the Tb3+-doped Lu2W3O12 phosphor has shown potential as an application in temperature sensors.

Funder

Natural Science Foundation of Fujian Province

Open Fund of Fujian Provincial Key Laboratory of Functional Materials and Applications

Key Project of Natural Science Foundation of Fujian Province

Key Technical Innovation and Industrialization Projects of Fujian Province

Major Project of Science and Technology of Xiamen City

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3