Abstract
Psychrotrophic bacteria, commonly called spoilage bacteria, can produce highly toxic hydrogen sulfide (H2S) in meat products. Thus, monitoring the presence of hydrogen sulfide in meat samples is crucial for food safety and storage. Here, we report a unique chemical sensor based on supramolecular nanorods synthesized via copper ion induced self-assembly of N,N-bis[aspartic potassium salt]-3,4,9,10-perylenetetracarboxylic diimide (APBI-K). The self-assembled nanorods can specifically detect sulfide with a detection limit of 0.181 μM in solution. The nanorods suspended in pure water show a turn-on fluorescence sensing behavior along with color change, acting as a dual fluorometric and colorimetric sensor. Spectroscopic investigation confirms the sensing mechanism due to copper ion displacement induced by the association with sulfide. Based on the high selectivity and sensitivity, supramolecular nanorod sensors were successfully employed to detect H2S in spoiled meat sample as well as dissolved H2S in water.
Subject
Physical and Theoretical Chemistry,Analytical Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献