Multiparametric Guided-Mode Resonance Biosensor Monitoring Bulk and Surface-Film Variations

Author:

Buchanan-Vega Joseph A.ORCID,Magnusson RobertORCID

Abstract

A guided-mode resonance (GMR) sensor with multiple resonant modes is used to measure the collection of biomolecules on the sensor surface and the index of refraction of the sensor environment (bulk). The number of sensor variables that can be monitored (biolayer index of refraction, biolayer thickness, and bulk, or background, index of refraction) is determined by the number of supported resonant modes that are sensitive to changes in these variable values. The sensor we use has a grating and homogeneous layer, both of which are made of silicon nitride (Si3N4), on a quartz substrate. In this work, we simulate the sensor reflection response as a biolayer grows on the sensor surface at thicknesses from 0 to 20 nm and biolayer indices of refraction from 1.334 to 1.43 RIU; simultaneously, we vary the bulk index of refraction from 1.334 to 1.43 RIU. In the specified span of sensor variable values, the resonance wavelength shifts for 2023 permutations of the biolayer index of refraction, biolayer thickness, and bulk index of refraction are calculated and accurately inverted. Inversion is the process of taking resonant wavelength shifts, for resonant modes of a sensor, as input, and finding a quantitative variation of sensor variables as output. Analysis of the spectral data is performed programmatically with MATLAB. Using experimentally measured resonant wavelength shifts, changes in the values of biolayer index of refraction, biolayer thickness, and bulk index of refraction are determined. In a model experiment, we deposit Concanavalin A (Con A) on our sensor and subsequently deposit yeast, which preferentially bonds to Con A. A unique contribution of our work is that biolayer index and biolayer thickness are simultaneously determined.

Funder

UT System Texas Nanoelectronics Research Superiority Award

the State of Texas Emerging Technology Fund

the Texas Instruments Distinguished University Chair in Nanoelectronics endowment

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

Reference35 articles.

1. Identification of Microorganisms Isolated from Jet Fuel Systems;Edmonds;Am. Soc. Microbiol.,1967

2. Characterization of JP-7 Jet Fuel Degradation by the Bacterium Nocardioides Luteus Strain BAFB;Jung;J. Basic Micro Biol.,2002

3. Guided-mode resonance sensor system for early detection of ovarian cancer;Wawro;Proceedings of the Optical Diagnostics and Sensing X: Toward Point-of-Care Diagnostics,2010

4. Attachment and Detection of Biofouling Yeast Cells Using Biofunctionalized Resonant Sensor Modality;Abdallah;IEEE Sens. J.,2020

5. Microbial contamination and its control in fuels and fuel systems since 1980—A review;Passman;Int. Biodeterior. Biodegrad.,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3