Abstract
Science the biological activities of chiral enantiomers are often different or even opposite, their chiral recognition is of great significance. A new assembly structure named TCPP-Zn-(S)-BINOL was obtained based on the interaction between chiral binaphthol (BINOL) and the porphyrin-based MOF structure formed by Meso-Tetra(4-carboxyphenyl)porphine (TCPP) and Zn2+, and a new chiral sensor was designed relying on TCPP-Zn-(S)-BINOL. The chiral platform was designed by using binaphthol as a chiral recognizer and the porphyrin MOF as an emitter, which can recognize tyrosine (Tyr) enantiomers via the electrochemiluminescence (ECL) method. According to density functional theory (DFT), TCPP-Zn-(S)-BINOL has a different affinity with L/D-Tyr due to the different strength of the hydrogen bond between chiral ligand BINOL and the tyrosine (Tyr) enantiomer. It will be more suitable for combination with L-Tyr, and the presence of L-Tyr will increase the ECL intensity of the modified electrode via the catalytic reduction of co-reactant reagents, achieving the purpose of the chiral recognition of Tyr enantiomers. These findings show that TCPP-Zn-(S)-BINOL can be used as an advanced ECL chiral recognition platform for biomedical applications.
Funder
Natural Science Foundation for Colleges and Universities in Jiangsu Province
Science and Technology Program of Zhejiang Province
Science and Technology Program of Jiaxing
Advanced Catalysis and Green Manufacturing Collaborative Innovation Center
Subject
Physical and Theoretical Chemistry,Analytical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献