Abstract
In this article, silver nanowires (AgNWs) were prepared and introduced into the double-layer photoanode of dye-sensitized solar cells (DSSCs). Silver nanowires with a diameter of about 50–60 nm and a length of 1–2 mm were prepared by the polyol method. The power conversion efficiency of the double-layer photoanode DSSC made of AgNWs@TiO2 and AgNPs@TiO2 composite materials is 6.38%. Compared with the unmodified DSSC, the composite double-layer photoanode combined with AgNWs and AgNPs increased the efficiency of DSSC by 58.7%. This increased efficiency was mainly due to the localized surface plasmon resonance effect caused by AgNPs and AgNWs. The increased light collection was caused by the plasma effect of AgNPs, and it increased the short-circuit photocurrent density (JSC). The conductive properties of AgNWs improved interface charge transfer and delay charge recombination. The effect of a low light environment on DSSC efficiency was also investigated, and the best photovoltaic conversion efficiency under an irradiance of 10 mW/cm2 was found to be 8.78%.
Funder
Ministry of Science and Technology, Taiwan
Subject
Physical and Theoretical Chemistry,Analytical Chemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献